If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36d^2-45d=0
a = 36; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·36·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*36}=\frac{0}{72} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*36}=\frac{90}{72} =1+1/4 $
| 5g^2-18g+9=0 | | 4x+5(x+3)=69 | | 1000^2x-5=1/100 | | 5x-20=x4 | | 33/4=r+2/ | | 2x+60-6x=30 | | 7X-5y-32=0 | | 5x-2(-5x-4)=-7 | | 60-4x=30 | | 5y^2+25y+20=0 | | 20+4(10-x)=30 | | 3(x-42)-2(x+14)=63-6(x-35) | | (8x-504)-(6x+84)=7-(5x-175) | | 10x+5(3x)+25(5+x)=1125 | | 11x-8=-129 | | 4x+87=90 | | 12(12x-8)=4(5-2x)+3(7-3x) | | 111/4=-146/7r | | 25x+50(2x)+(5x)=1050 | | 5p-8=122 | | 2x-6+7-3x=11 | | 5x−7=√(-115x+59) | | 4(x+5)-3(x+4)=1 | | 2-(3-x)=6 | | 25x+5(x+20)=1870 | | 5n+n=18 | | 12÷4(6)=a*4 | | -10(n-6)=160 | | 10x+5(20+x)=490 | | 4(x+10)+2(-x+8)=10 | | 3^x+1=150 | | -3n+11=44 |